Límites
de sucesiones y de funciones
|
|
Unidad 6 |
9- LÍMITES DE FUNCIONES RACIONALES.
Llamamos función racional a aquella que es cociente de polinomios.
Veamos la representación de la funciones f(x) = 1/x y g(x) = x/(x+1).
18- ¿Cómo se comporta la función si x tiende a +∞, es decir a dónde llega la función para valores grandes de x?
19- ¿Ves alguna relación entre el límites de la sucesión y la función correspondiente?
Si existe el límite de la función f(x) cuando x tiende a +∞ y es un número k, la recta y = k es una asíntota horizontal de la función. Una asíntota es una recta a la que se va acercando la función cada vez más sin llegar a cortarla.
20- ¿Cuál es la asíntota de f(x) = (x-2)/(2x-1)? Intenta dibujar la función cuando x tiende a +∞, ayudándote de la representación de la sucesión (n-2)/(2n-1) vista anteriormente?
Patricia Ferro Jove | ||
Ministerio Educación. Año 2004 | ||
Los contenidos de esta unidad didáctica están bajo una licencia de Creative Commons si no se indica lo contrario.