| LÍMITE Y CONTINUIDAD DE FUNCIONES | |
| INTRODUCCIÓN | |
| El límite de una función está íntimamente unido a su representación gráfica y a la interpretación de la misma debido a que lo que nos indica es el comportamiento o tendencia de la gráfica. Por esta razón, el concepto de límite es básico en el Análisis Matemático. Las primeras definiciones de límite aparecen en la obra de Jonh Wallis (1616-1703) y en ella se utiliza por primera vez el símbolo infinito. Con posterioridad Jean Le Rond D'Alembert perfeccionó la definición de límite. Fue Ausgustin Cauchy (1789-1857) quien dio la definición de límite que utilizamos hoy en día. | |
| OBJETIVOS | |
| 
 
 
 
 | 
| Ángela Núñez Castaín | ||||||||||||||
|  | ||
| Ministerio de Educación, Cultura y Deporte. Año 2001 | ||

Los contenidos de esta unidad didáctica están bajo una licencia de Creative Commons si no se indica lo contrario.