FUNCIONES POLINÓMICAS

4º E.S.O. opción B

1. LA FUNCIÓN DE PRIMER GRADO


  • Funciones de ecuación y = mx

  • ACTIVIDAD 1
    Si el coste de la gasolina es de 80 céntimos el litro:
    1º) Realiza una tabla de valores con algunos costes de la gasolina.
    2º) Escribe la función asociada (fórmula).
    3º) Representa gráficamente dicha función.
Los puntos (x, y) cuyas coordenadas cumplen la relación y = mx están situados en una recta que pasa por el origen.
La recta y = x es la bisectriz del primer cuadrante, y la recta y = -x es la bisectriz del segundo cuadrante

ESCENA 1



  • Funciones de ecuación y = mx + n

  • ACTIVIDAD 2

    Una empresa de paquetería cobra por cada paquete 2 euros, y por cada kilómetro 20 céntimos:
    a) ¿Cuál es la función que da el coste del envío de un paquete?
    b) ¿Cuál es el coste del envío de un paquete a 30 km?
    c) Representa gráficamente dicha función.

Dos rectas son paralelas si tienen la misma pendiente o la misma inclinación.
Las rectas y = mx, y = mx + n son paralelas.
Si m > 0, la recta es creciente, y si m < 0, decreciente.

ESCENA 2



  • Rectas particulares
Las rectas de ecuación y = k son paralelas al eje de abscisas (OX)

Las rectas de ecuación x = c son paralelas al eje de ordenadas (OY)


    ESCENA 3

ACTIVIDADES
Para resolver las actividades y comprobar las soluciones puedes utilizar las tres escenas anteriores.

3. Representa las funciones:     ESCENA 2                                            ESCENA 3

a) f(x) = 2x + 1
c) h(x) = 4
b) g(x) = -x + 1 d) k(x) = -2
Indica si son crecientes, decrecientes o constantes.

4.  Observa la pendiente de las siguientes rectas e indica si son funciones lineales crecientes o decrecientes:

a) f(x) = 4x + 6 c) h(x) = 44x - 12
b) g(x) = -3x + 5
d) k(x) = -11x - 23


 5. Calcula la fórmula de la función dada por la siguiente tabla y di si su gráfica es una recta:

x 1 2 3 4 5
f(x) 3 7 11 15 19

Gráfica

6. Escribe la ecuación de la recta:

a) Que pasa por el punto (2, -7) y es paralela al eje OX.  ESCENA 3

b) Que pasa por el punto (-1, 4) y es paralela al eje OY.  ESCENA 3

c) Que resulta de sumar 4 unidades a la ordenada de los puntos de la bisectriz del primer cuadrante. ESCENA 2 

d) Que resulta de restar 3 unidades a la ordenada de los puntos de la recta y = -x +1 ESCENA 2 


7.
En un puerto deportivo, el alquiler de una moto acuática cuesta 12 € y luego se paga por cada minuto 2 €.

a) ¿Cuál es la función que da el coste de una carrera en función del tiempo t?

b) Si ha pagado 62 €, ¿cuánto tiempo ha estado navegando?

8. Un recibo de la luz consta de dos partes: una donde se incluyen unos apartados fijos que actualmente supone 22 €, y otra parte que depende de los kilovatios (kw) consumidos y cuyo coste por kw es de 9 €, IVA incluido.

a) ¿Cuál es la función que da el coste según el número x de kw?

b) Calcula el coste si tres familias han consumido 10 kw, 20 kw y 40 kw, respectivamente.

9. Halla la función lineal que tiene por pendiente m = 5 y pasa por el punto A(2, 7) ESCENA 2 

(Activa ej9 cambiándolo a 1. Varía la posición del punto P)


       
           
 
Isabel García López


 
Ministerio de Educación, Cultura y Deporte. Año 2005